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It has been suggested that some lattice models of polymers, especially ones that 
incorporate more realistic excluded volume interactions extending to further 
neighbors, may be subject to gridlock. A model is defined to have the property 
of gridlock if it cannot melt at any temperature unless a density decrease is 
allowed. Classical theories of polymer melting are incompatible with the 
property of gridlock. This paper proves rigorously that a two-dimensional 
square-lattice model of polymer chains that have nearest-neighbor excluded 
volume interactions (called the X1S model) has the gridlock property. The 
proof uses elementary concepts from graph theory. Also, different inter- 
pretations of the XIS model are given in terms of real polymers. This leads to a 
discussion of a number of different classes of melting depending upon whether 
the intramolecular rotameric energies and the attractive intermolecular energies 
are antagonistic to or supportive of the melting transition. 
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1. I N T R O D U C T I O N  

It is generally acknowledged that modeling of the melt ing/crystal l izat ion 

equilibrium phase transit ion in long chain polymers such as polyethylene 
requires consideration of both the flexibility of the polymer and of the 
excluded volume intermolecular interaction. In contrast, intermolecular 

longer-range attractive interactions have been considered to be of "minor  
importance, ''(1) because such interactions were not required in a classical 

calculation that yielded quite reasonable agreement with experiment. The 
classical theory (a) stood on two computat ional  legs. One leg was a statistical 
approximation designed to describe the melt above the transit ion 
temperature, T M. This approximation, which imposes a decoupling of chain 
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conformational degrees of freedom from the excluded volume constraint, is 
being shown to be quantitatively inaccurate by Monte Carlo calculations on 
simple lattice models. (z'3) The other leg was the assumption that the system 
must remain in a thermodynamically negligible number of states when 
T <  TM, i.e., there is an "inactive low-temperature phase. ''(4~ This 
assumption has been shown to be false for the same simple lattice 
models, (5-7) for which the classical calculations should be as valid (or 
invalid) as for any models. (8) A much fuller discussion of the classical theory 
and its failure is given in a recent review. (4) 

The simple lattice models previously discussed would appear to be too 
easily disordered below T~a to be good models of polymer melting. Also, 
these models are not very faithful geometric representations of any real 
polymer chains. Slight differences in the details of lattice models can make a 
large difference in phase transition behavior, as is shown for four exactly 
solved two-dimensional models.tS'9) These exact results show that 
polymerlike models do not all belong to the same universality class. Thus 
far, there are no reliable identifiers of universality class for such models. 
Therefore, there is some motivation to consider more realistic models which 
are more likely to be in the same universality class as the particular polymer, 
e.g., polyethylene, that one wishes to study, and a start has been made in this 
direction. (4) 

One way to construct more realistic lattice models is to represent the 
geometry of the polymer chains more nearly exactly. This requires aban- 
doning the square and simple cubic lattices and, for polyethylene chains, it 
leads one to the four-coordinated three-dimensional tetrahedral, i.e., diamond 
lattice, with 1.54-~, bond lengths. Even more importantly, a realistic 
tetrahedral lattice model for polyethylene is not "simple" in the sense of 
previously considered models because each CH 2 monomer in the 
polyethylene polymer excludes from occupation by other CH 2 monomers, 
not only one lattice site, as in the "simple" models, but also several 
neighboring lattice sites. (4) 

Our examination of more realistic nonsimple "further neighbor excluded 
volume" models led us to believe that they do indeed belong to a different 
class o f  models from the previously studied simple models. In particular, it 
seems that these models may be subject to gridlock; this is a new concept 
which means that the model becomes locked into a small set of confor- 
mational states, even at infinite temperature, unless the polymer chain 
density is allowed to decrease. ~4) Unlike the simple square or cubic lattice 
models which disorder too easily, models with gridlock should remain much 
less chain conformationally active below T~. At T~, the chain density 
decreases and many more conformationally disordered chain states become 
possible within the constraints of the excluded volume interactions. In this 
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view of the melting/crystallization phase transition in polymers the density 
decrease at T M is a necessary part of the transition in real polymers like 
polyethylene. In fact, a good deal of the enthalpy of melting (about 70 % for 
polyethylene ~1~ may come from the attractive intermolecular interactions. 
The intramolecular chain flexing energy, while important, is then not the 
whole story (amounting to less than 25% of the enthalpy of transition in 
polyethylene). This has led to the formulation of the hypothesis that inter- 
molecular interactions play an essential role, not a minor role, in polymer 
melting. 

The concept of gridlock has been pivotal in formulating the new 
hypothesis for polymer melting. However, it is not easy to prove that a given 
model has gridlock. This is partly because the three-dimensional diamond 
lattice models have several different kinds of symmetrically and 
rotamerically inequivalent states with maximum density. (4) It is also partly 
due to the difficulty of proving nonexistence, in this case the nonexistence of 
many states with maximal density. In contrast, it is easier to prove the 
existence of many such states for the simple models on the square, cubic, and 
even the diamond lattice. Fortunately, it is possible to prove rigorously that 
a two-dimensional lattice model of chains with nearest-neighbor excluded 
volume interactions (the X1S model) does indeed have gridlock, so the 
concept is not a vacuous one. The proof, which is presented in the next 
section, will be the primary result in this paper. Discussion of this lattice 
model in physical terms may also be of some interest and this is given in the 
last section. 

2. PROOF OF GRIDLOCK FOR THE X l S  MODEL 

A chain model on the square lattice is considered in this paper. The 
excluded volume interactions consist of forbidding any two nonbonded 
monomers from occupying the same or nearest-neighbor lattice sites. This 
has been called the X1S model, ~4) referring to excluded volume interactions 
with hard cores including up to 1st neighbor sites on the square lattice. In 
this notation the "simple" square lattice model is called X0S because 
occupancy of first neighbors is allowed; only the monomer site itself is 
excluded to additional occupancy. Figure 1 shows the densest state of 
packing the chains in the X1S model; it has a density, p = 2/3, of lattice 
sites occupied by the centers of monomers. Notice, in particular, that an 
array of parallel straight chains only has a density, p -- 1/2. Further, notice 
that no single chain may occupy all four sites around a square because there 
would then be two nonbonded nearest-neighbor monomers; such a forbidden 
sequence of chain links, which is allowed in the X0S model, will be called a 
tight turn. We now proceed to prove that the X1S model has gridlock by 
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Fig. 1. The densest conformational state for the X1S model with number density p = 2/3. 
The lattice is the square lattice oriented at 45 ~ to the usual x or y axis. Each unconnected light 
dot is a vacancy. Each heavy dot on a chain is a monomer. No pair of nonbonded monomers 
is a nearest neighbor. Only a small piece of a very large large lattice is shown. 

proving that  there are no other maximal ly  dense states except for the one in 
Fig. 1 and its obvious five symmetr ica l  equivalents.  

Let us develop some notation. Firs t ,  consider sites occupied by the 
centers of  chain monomers ;  let n F be the number  of  such f i l l e d  sites for a 
given conformat ional  state. Of  those filled sites, some will be occupied by 
monomers  a t tached to two col inear  bonds;  let the number  of  these s t r a i g h t  

sites be n s .  The other sites will be occupied by monomers  at tached to two 
noncol inear  bonds which meet at right angles to form a corner;  let n c denote 
the number  of  these c o r n e r  sites. Since we are interested in the limit of  very 
long chains on very large lattices, chain ends are negligible. Therefore, 

nv  = ns  + n c  (1) 

Next,  we consider  v a c a n t  sites, n v in number.  Again,  ignoring chain 
ends one has 

n F + n v = N (2) 

where N is the number  of  lattices sites. Each vacant  site will be classified 
with two numbers,  i and j ,  according to its local  neighborhood,  as shown in 
Fig. 2. This local  ne ighborhood includes the four nearest-neighbor  (NN)  sites 
and also the four next-nearest-neighbor ( N N N )  sites to the central  vacant  
site. The first number  i in this classif icat ion scheme refers to the number  of  
filled nearest-neighbor  (NN)  sites to the central  vacant  site being considered. 
The second number  j in the classif icat ion scheme refers to the number of  
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Fig. 2. Different kinds of vacant sites and their ij classifications. The first number i given for 
each type of vacant site is the number of filled nearest-neighbor sites and the second numberj 
is the number of associated corner sites as defined in the text, The central vacant site being 
classified is designated by a large filled dot. Some other local sites that are necessarily empty 
in the X1S model are designated by an unfilled dot. Sites with no dot and with no polymer 
chain going through them may or may not be filled depending upon irrelevant continuations 
of the polymer chains shown or other polymer chains. Those figures with three dashed bonds 
incident upon a filled vertex represent several possibilities, each of which utilizes two of the 
three bonds so indicated, all of which have the same ij classification. 

corner  sites tha t  are a s s o c i a t e d  with  the cent ra l  v a c a n t  site; a corner  site is 

def ined to be assoc ia t ed  with one  (and only  one)  v a c a n t  site i f  the v a c a n t  site 

is d i agona l ly  oppos i te  the corner  site on tha t  (un ique)  e l emen ta ry  square  

which  has  two  sides occup i ed  by the bonds  inc ident  to the corner  site. 

C lea r ly ,  the only  poss ible  sites tha t  can  be assoc ia ted  corner  sites to a 

centra l  v a c a n t  site are N N N  sites. Fu r the rmore ,  every  corner  site is an 

assoc ia ted  corner  site to one  and on ly  one  o f  its four  N N N .  

One  not ices  that  not  every  c o m b i n a t i o n  2 o f  i and j appears  in Fig.  2. 

On ly  va lues  o f j  appear  that  sat isfy 

m a x / - -  1, 0 /> j >/ m a x  i --  2 , 0  (3) 

where  0 ~ < i ~ < 4 .  A l t h o u g h  only  the second inequa l i ty  is essent ia l  to 

c o m p l e t i o n  o f  the proof ,  it m a y  be o f  s o m e  interes t  to p rove  both  inequal i t ies  

as an ind ica t ion  o f  the comple t enes s  o f  the c lass i f ica t ion  s c h e m e  in Fig.  2. I f  

2 Each case shown in Fig. 2 is meant to include obvious symmetries. In addition, to obtain all 
the possibilities for the second member of the 20class and the 10class, take all 
combinations at each filled nearest-neighbor site of any two of the three bonds shown. 



536 Nagle 

i =  4, then one N N N  site must be unoccupied, requiring j~< 3, because 
otherwise there would be an eight-bond polymer loop that completely 
surrounds the central vacant site and such closed loops are forbidden in the 
X1S model. If i = 3, then the two N N N  sites adjacent to the vacant NN site 
cannot be associated corner sites, so j ~< 2. Together with the observation 
that one corner site ( j  = 1) requires at least two filled NN sites, this proves 
the inequality max i - 1, 0 ) j. To prove the second part of the inequality in 
(3), consider first i = 3. That unique filled NN site that is colinear with the 
vacant site and the only unfilled NN site must have a bond to at least one 
N N N  site, which in turn must have a bond to the next NN site because it is 
also filled. Therefore, the N N N  site is an associated corner and j />  1 if i = 3. 
If i = 4, then each filled NN site has at least one bond leading into an 
associated corner; since each associated corner has at most two such bonds 
adjacent to it, there must be at least i / 2  = 2 associated corners. The cases 
i = 0, 1 and 2 are trivial since j need only be )0 .  This completes the proof of 
(3). 

From the completeness of the classification scheme for vacant sites it 
follows that for any chain state in the X1S model 

n v  = Z Z nu (4) 

where n u is the number of vacant sites belonging to the tj class shown in 
Fig. 2, the first sum is over i from 0 to 4, and the second sum is over those 
values o f j  compatible with a given i according to (3). The second sum is 
also meant to go over all symmetrically inequivalent members of the same/ j  
classes, an example being the two different members of the 20 class. 

Another type of relation is obtained by considering the number, nvv ,  of 
V F  edges on the lattice between two sites, one of which is vacant and one of 
which is filled. Since each filled site has two such edges, in addition to the 
two polymer bonds, one has 

n vv = 2nv (5) 

Also, by counting the V F  edges adjacent to each vacant site one has 

nvv  = ~ • in u (6) 

where the summations, here and below, have the same limits as in (4). 
Combining (5), (6), and (1) yields 

Z Z (//2) n u =  n F =  n s + n c (7) 

A similar kind of relation can also be established by counting the number of 
filled corner sites associated uniquely with each vacant site, namely, 

= y'  j ,j (8) 
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It is also useful to display two relations which follow from the 
preceding ones and which do not require any additional graph theoretical 
concepts. First, subtracting (8) from (7) yields 

n s = ~ '  • (//2) - jn i j  (9) 

Second, using (2), (5), (4), and (6), the total number  of  lattice sites, N, can 
be written as 

N = n v + n v = n v + ( 1 / 2 ) n v F = ~ _ ~ _ .  [1 + ( i / 2 ) l n i j  (10) 

Let us now consider the volume of the system, synonymous  with the 
size, N, of the lattice, which is required to accommoda te  a fixed amount,  n F, 

of polymer  chains. F rom exploratory examination of a number  of  states it 
appeared that one might have the following basic inequality: 

N > /  (3n F + ns ) /2  (11) 

In terms of the volume, v, per monomer ,  (11) is equivalent to 

v = p - 1  = N /nF  >/ (3/2) + (1 /2) (ns /nF)  (12) 

This is indeed the case: proof  of  (1 1) follows from the use of  (10), (7), and 
(9) to compute 

2 N - - ( 3 n e + n s ) = ~ _ . ~ ( 2 - - i + j ) n i j = n 4 3 + n a 2 + n z l + n l o + 2 n o o  (13) 

and the observation that, because of  the second inequality in (3), the right- 
hand side of (13) is non-negative. F rom either (11) or (12) one sees that  no 
state can be maximal ly  dense unless n s = 0 .  Also, (12) shows that  
Pmax ~ 2/3. F rom the explicit construction of the state in Fig. 1 it follows 
that Pmax = 2/3 as was asserted earlier. 

To finish the proof  of  gridlock it suffices to show that  there are only six 
symmetr ical ly  related states with n s = 0 and with max imum density. First, 
observe that specifying the positions at a single lattice site of  any two 
adjacent bonds in an n s = 0 chain uniquely determines the conformat ion of 
that chain and its position on the lattice. Once one such chain is specified, 
each neighboring chain must  also be uniquely positioned as closely as 
possible if max imum density is to be achieved. 3 There are six such states 

3 Clearly, many states with n s = 0 exist which do not have maximum density, although they 
are thermodynamically insignificant. Also, complete precision in this counting requires some 
specification of the length of the chains and/or the boundary conditions; the simplest case is 
periodic boundary conditions and the same even number of lattice sites in each direction for 
a lattice oriented as shown in Fig. 1. 



538 Nagle 

because there are four ways to place a corner site at a given lattice site and 
there are two ways to keep the given lattice site vacant but to pass two 
n s = 0 chains as closely as possible on either side of it. 

DISCUSSION 

As was mentioned in the Introduction, the primary motivation for 
consideration of the X1S model (excluded volume interactions extending to 
first neighbors on the square lattice) is that it can be proved clearly that this 
model has gridlock. Therefore, the concept of gridlock is not vacuous. It also 
provides a nice contrast to the much studied simple XOS model which does 
not have gridtock. However, no inference should be drawn that the X1S 
model is our preferred model for polymers; our preference for polyethylene 
remains with three-dimensional models with further neighbor interactions on 
the diamond lattice. (4) 

Nevertheless, it is worth discussing briefly the strengths and weaknesses 
of the X1S model as a polymer model, especially since this discussion will 
illustrate some additional varieties of melting in chain models. To interpret 
the X1S model in terms of polyethylene 4 one must associate the various 
conformations of the X1S model chains with conformational sequences in 
polyethylene. Such an association, as with any two-dimensional model, is 
necessarily forced because the geometry is different. One has a further 
ambiguity for the X1S model because there are two possible ways to 
interpret the model, both with merits and demerits, which will be considered 
in turn. 

The first way to interpret the X1S model in terms of polyethylene is the 
same as the identification used for the simple X0S model. A chain with all 
monomers lying on a straight line is called an all-trans chain. Whenever a 
chain makes a right angle, such a turn is identified as a gauche rotation 
which costs the higher energy e. If a chain makes two successive left-hand 
turns (g+g+), then it forms a tight turn which forces two nonbonded 
monomers to be nearest neighbors; this is allowed in the simple X0S model 
but forbidden in the X1S model. In real polyethylene successive gauche 
rotations of opposite sense (g+g-) incur a substantial energy penalty, about 
4c, which is known as the pentane effect. (m Although it is g+g+ sequences, 
not g+g- sequences, that are heavily penalized in the X1S model, the fact 
that one such sequence is penalized makes it a more realistic model for 
polyethylene than the X0S model. There are two disadvantages to this iden- 
tification. The first is that a sequence of only three sites or two bonds 
determines whether the central site is trans or gauche, whereas in 

4 It is possible that it is a better model for other polymers. 
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polyethylene a sequence of four methylenes is required. The second is that 
this identification requires the densest state to consist of all-gauche instead of 
all-trans chains. 

The second way to interpret the X1S model overcomes the two disad- 
vantages of the first way. This is done by declaring the zig-zag chain 
consisting of all corners to be the all-trans chain. 5 To identify a trans 
rotation in an arbitrary chain now requires examination of a sequence of 
three bonds, or four monomers, as in real polyethylene. The disadvantage of 
this identification is that conformational sequences are not isomorphic to 
those in polyethylene. For example, a trans bond can only be followed by a 
trans bond or by a gauche bond in a single way, not by a gauche bond in 
two ways. Also, not all gauche rotamers are symmetrically equivalent. 

For the purposes of illustrating gridlock the second interpretation is 
preferable. In this interpretation the T = 0 K state consists of all-trans chains 
which, by maximizing density, minimizes both the conformational energy 
and the attractive van der Waals energy. As the temperature is raised the 
system would remain in a highly ordered nearly all-trans state with only a 
few defects. ~4~ In order for the chains to become conformationally disordered 
at melting would require the volume expansion necessary to circumvent the 
effect of gridlock. Therefore, the X1S model in this interpretation cannot 
conform to the classical theory. (1) 

Nevertheless, the first interpretation also raises two interesting 
possibilities not usually considered. For the first possibility suppose that the 
conformational energy dominates the van der Waals attractive interaction 6 
so that the T =  0 K state is the all-trans (straight chain) state, even though 
this does not minimize the attractive intermolecular energy. (p = 1/2Pmax.) In 
this case melting is driven, as usual, by the entropic contribution of disor- 
dered chains, but it may also be partially driven by the intermolecular 
interactions if the disordered states with gauche rotamers have greater 
density than the ordered states. That is, one might even have a volume 
decrease upon melting in such a model. For the second possibility suppose 
that the van der Waals attractive intermolecular interactions dominate the 
conformational energy so that the T =  0 K state consists of an array of 
parallel all-gauche chains which is the state shown in Fig. 1. In this case 
melting would be driven both by the entropic contribution of disordering 
chains, and also by the conformational energy. Usually, the conformational 
energy and the attractive van der Waals cohesive energy are both 
antagonistic to melting as in the second interpretation of the X lS  model. But 
in this first interpretation of the X lS  model the cohesive energy switches 

5 The all-trans chain in real polyethylene is also a zig-zag chain. 
6 This is usually deemed to be the case for hydrocarbon chains. "2~ 
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sides in the first case and the conformat ional  energy switches sides in the 
second case. 

It would appear  that  gridlock,  including its various cases, should play a 
role in determining the different classes of  po lymer  melting. Not  all chain 
models  fit into the same melting class and it is quite possible that  real 
polymers ,  which encompass  a great  deal of  variety,  do not either. At tent ion 
should be paid  to details of conformat ional  energetics and how the chains 
can be packed  together in condensed matter  phases. Theories,  such as the 
classical  theories,  (1~ that  are incapable  of  dist inguishing these features and 
predict  a single universal  class of  f irst-order melting ~8) are therefore shown to 
be inadequate.  
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